Gene Therapy for Fanconi Anemia: The Second Decade and Beyond

Jennifer E. Adair, Ph.D.
Fred Hutchinson Cancer Research Center
Hans-Peter Kiem Laboratory
Seattle, Washington, United States
What is Gene Therapy?

Any therapy where the benefit is achieved by the transfer of genetic material (a “gene”) into a patient’s cells.

For FA patients, the primary goal of gene therapy is to prevent bone marrow failure without the risk of GVHD.
Gene Therapy in Blood Stem and Progenitor Cells

Therapeutic Gene

- Self-renewing stem cell
- Lympoind progenitor
- Thymus
- B lymphocyte
- Natural killer (NK) cell
- T lymphocyte

- Myeloid progenitor
- Pluripotent stem cell

- Erythroid CFU
- Megakaryocyte
- Basophil CFU
- Eosinophil CFU
- Granulocyte-monocyte CFU

- Erythrocytes
- Platelets
- Basophil
- Eosinophil
- Neutrophil
- Monocyte
- Dendritic cell
- Macrophage

Genetic Disease Patient
Ex Vivo Gene Therapy: Putting Functional Genes Into Bone Marrow Stem Cells Outside of the Body

- Leukapheresis or Bone Marrow Harvest
- Reinfusion
- Isolation of Bone Marrow Stem Cells

Virus-Mediated Gene Transfer of Functional FA Gene

GOAL: Gene modified bone marrow stem cells engraft and produce new blood cells for the life of the patient without the risk of GVHD.

- SCID
- WAS
- ALD
- MLD

FA Patient
Potential for Success of Gene Therapy in FA Patients

1. Successful gene therapy for other monogenic diseases demonstrates ex vivo gene therapy of bone marrow stem cells can work (SCID-ADA, X-linked SCID, ALD and MLD).

2. Rare evidence for somatic mosaicism in Fanconi anemia: natural gene therapy improves marrow function.

Cartier et al. 2009, Science
Clinical Study of FA Gene Therapy: A History

1. First gene therapy trial for FA(C) patients initiated.
2. First retrovirus carrying FA(A) reported.

1997
- First report of retroviral FA(C) gene correction indicates that improvement is only transient.

1998
- First report of retroviral transduction to assign complementation group.

1999
- First reported successful *in vitro* correction using lentivirus.
- First report of successful mobilization and peripheral blood stem cell collection in FA patients.

2001
- Report of improved gammaretroviral FA(C) gene correction in mice.

2006
- Report of diminished stem cell availability in FA-A patients treated with FA-A gene therapy using a gammaretrovirus with only transient benefit.

2007
- 1st International FA Gene Therapy Working Group Meeting report issued.

2010

2011

2012
- Lentivirus gene therapy trial utilizing improved culture conditions and FA GTWG recommendations initiated for FA-A patients.
Previous Trials: Outcomes

1. 1999 (Liu) Gammaretroviral-mediated delivery of FA(C) gene into CD34+ HSCs in FA(C) patients.
 - no long-term engraftment observed; published results

2. 2000 (Wagner) Retro-viral-mediated delivery of FA(C) gene into mobilized peripheral blood HSCs.
 - poor mobilization and blood stem cell survival ex vivo; no report

3. 2006 (Williams) Gammaretroviral-mediated gene delivery of FA(A) to CD34+ BM HSCs in FA(A) patients.
 - transient gene correction; published report
1. No Phase II Trials primarily due to lack of long-term engraftment in Phase I studies.

 Conditioning or selection of corrected cells?
 - Cyclophosphamide, irradiation or busulfan at low doses may improve engraftment.

2. Low FA patient bone marrow cellularity prevents collection of large numbers of stem cells.

 Can we increase the number of FA blood stem cells?
 - New drugs improve mobilization and stem cell collection.
 - Small molecules or other special cell cultures which increase the number of stem cells may work for FA stem cells after they are corrected.

3. *Ex vivo* culture time and conditions can damage cells further, compromising engraftment potential.

 Can we preserve the engraftment potential of FA blood stem cells?
 - Low oxygen and agents that reduce damage caused by oxygen can prevent stem cell damage.
 - Lentivirus vectors reduce the time in culture by $\frac{1}{2}$.

FA gene therapy in the clinic: 18 Years of Research
Advances in Gene Transfer Process Should Improve Safety and Engraftment

1. Improved *ex vivo* culture conditions
 - Hypoxia (1-5% O₂)
 - Antioxidant co-culture

2. Improved lentiviral vector design
 - SIN (self-inactivating) to prevent turning on harmful genes nearby

3. Shorter transduction protocol
 - Shorter *ex vivo* culture time = greater cell viability and long-term repopulating potential
Phase I: Study of Gene Transfer for Patients with Fanconi Anemia Complementation Group A (FANCA).

Adult patients (≥ 18 years) with confirmed FA of the A complementation group

<table>
<thead>
<tr>
<th>Day</th>
<th>G-CSF (3 days prior to leukapheresis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5 to -3</td>
<td>G-CSF + Plerixafor</td>
</tr>
<tr>
<td>-2</td>
<td>Peripheral blood CD34+ count If ≥ 5/mcL → Apheresis → CD34+ cell count</td>
</tr>
<tr>
<td></td>
<td>G-CSF + Plerixafor</td>
</tr>
<tr>
<td>-1</td>
<td>Peripheral blood CD34+ count If ≥ 5/mcL → Apheresis → CD34+ cell count If < 5/mcL</td>
</tr>
<tr>
<td></td>
<td>Bone Marrow Harvest (for patients with < 5 CD34+ cells/mcL in PB or < 2 x 10^6 CD34+ cells/kg collected following mobilization and/or apheresis)</td>
</tr>
<tr>
<td></td>
<td>ClinMACS CD34+ selection</td>
</tr>
<tr>
<td></td>
<td>Gene Transfer</td>
</tr>
<tr>
<td>0</td>
<td>Infusion</td>
</tr>
</tbody>
</table>
What We Hope To Learn:

1. Can we collect enough stem cells?

2. Does the lentivirus effectively transfer the FA-A gene?

3. Do the improved culture conditions and reduced time outside the body allow for better engraftment?

4. Do the gene corrected stem cells produce blood cells after infusion?

5. How safe is this approach in FA-A patients?
Who Can Enroll?

FA-A patients ≥ 18 years old who meet the following criteria:

- have normal or near-normal kidney, liver and lung function
- have normal or near-normal bone marrow cytogenetics
- have adequate blood cell counts
 - ANC ≥ 500/mcL
 - Hemoglobin ≥ 8 g/dL
 - Platelets ≥ 20,000/mcL
- are able to take care of themselves and understand the consent form
- do not have an active or ongoing infection
- do not have another cancer with limited survival (<2 years)
- do not have another significant disease such as uncontrolled diabetes or heart disease or haemophilia
- not pregnant or HIV+
- not undergoing a BMT with a matched sibling donor
What Can I Expect if I Enroll?

1. Travel to and from Seattle, Washington.

2. ~6-8 weeks in Seattle:
 a. Testing before treatment and placement of a central venous catheter (1-2 weeks).
 b. Treatment for mobilization, collection and infusion (1-2 weeks).
 c. Post-infusion monitoring including regular blood draws and one bone marrow aspirate after infusion of gene modified cells (4 weeks).

3. Monitoring after returning home (done locally):
 a. For the first 2 months, blood draws every two weeks.
 b. For the next 9 months, blood draws once per month.
 c. If gene modified cells are found in blood at 1 year, blood draws at least annually; bone marrow samples if needed.

Costs: All study-related treatments while in Seattle are covered by the clinical trial. Any treatments that are standard for FA are still covered by patients and/or their insurance carrier. Travel and lodging for time in Seattle are not covered by the study, but FARF can help!
Why Should I Participate?

GOAL: To prevent bone marrow failure in FA patients without the risk of GVHD.

1. First gene therapy trial for FA(C) patients first proposed.
2. First retrovirus carrying FA(A) reported.

1994

First report of retroviral FA(C) gene correction indicates that improvement is only transient.

1997

First report of retroviral transduction to assign complementation group.

1998

First report of retroviral transduction to assign complementation group.

1999

Report of improved gammaretroviral FA(C) gene correction in mice.

2001

1. First reported successful *in vitro* correction using lentivirus.
 2. First report of successful mobilization and peripheral blood stem cell collection in FA patients.

2006

 2. First report indicating that hypoxia promotes FA BM progenitor growth *ex vivo*.

2007

Report of diminished stem cell availability in FA-A patients treated with FA-A gene therapy using a gammaretrovirus with only transient benefit.

2010

2011

1st International FA Gene Therapy Working Group Meeting report issued.

2012

Lentivirus gene therapy trial utilizing improved culture conditions and FA GTWG recommendations initiated for FA-A patients.

You are here?

Gene therapy for FA(C) patients first proposed.
Thank You for Your Attention!
Peripheral Blood Gene Marking Detectable Only in Cyclophosphamide-Conditioned Mice

% Gene Marking by GFP Expression (in WBCs) vs Days Post Transplant

- Control Group
- AraC
- AraC + Flu
- Cytoxan
GVHD is Caused by Donor Immune Cells

1. Don’t use donor cells: “Fix” the patient’s own bone marrow stem cells by giving them a working version of the defective FA gene.

2. Get rid of the donor immune cells if they cause problems: Give donor immune cells a gene that will cause them to die if they misbehave after transplant.
Gene Therapy of Other Cell Types Could Also Benefit FA Patients

Therapeutic Gene

Self-renewing stem cell

Pluripotent stem cell

Lympoid progenitor

Thymus

B lymphocyte

Natural killer (NK) cell

T lymphocyte

Erythroid CFU

Megakaryocyte

Basophil CFU

Eosinophil CFU

Granulocyte-monocyte CFU

Erythrocytes

Platelets

Basophil

Eosinophil

Neutrophil

Dendritic cell

Monocyte

Macrophage

T & NK Cell Gene Therapy in Donor Cells: Suicide genes to eliminate GVHD
Retrovirus-Mediated FA Gene Delivery

Cell

Nucleus

Genomic DNA

Reverse Transcription

dsDNA

Integration

Transcription

Translation

Functional FA Transgene Product

Cytoplasm

Viral Particle

Viral RNA containing FA Transgene