FA & Endocrine Issues

Susan R. Rose, MD
Cincinnati Children’s Hospital Medical Center
& University of Cincinnati
Most children & adults with FA have some endocrine issue
Related to FA itself or treatment
Persons with FA should have an annual endocrine evaluation
Outline of talk

- **Hormones by age**
 - Glucose & insulin
 - Growth
 - Hypothyroidism
 - Growth hormone deficiency
 - Puberty
- Bone mineral

- Evaluation
- Therapy
Growth control by age

- Fetal
 - Placental nutrients
- Infant
 - Nutrition
 - Insulin
 - Thyroid
- Child
 - Nutrition / insulin
 - Thyroid
 - Growth hormone
- Adolescent
 - Nutrition / insulin
 - Thyroid
 - Growth hormone
 - Puberty hormones
Glucose-insulin control

- Body’s ability to use nutrition
 - Depends on insulin secretion
 - Insulin influences growth & health

- After intake of meal
 - Rise in glucose, then rise in insulin

- Normal glucose
 - does not rise too high
 - & does not fall too far
Glucose-insulin effects by age

- Infant
 - Growth
 - Hypoglycemia

- Child & adolescent
 - Growth
 - Hyperglycemia

- Adult
 - Diabetes
 - Cardiac health
Weight

- Often below average (-1.5 SD)
 - but low caloric intake does not explain height deficit
 - 1/4 have low weight for height (called “failure to thrive”)
- 1/4 to 1/3 -- relatively overweight for height
Factors affecting weight

- small appetite
- malabsorption
- increased calorie needs during illness
- With low insulin secretion
 - blood sugar rises, lose glucose in urine
 - insulin deficiency contributes to poor weight gain.
Impaired insulin secretion (Elder 2008)

- Findings on oral glucose tolerance test
 - 8% of 39 with FA -- diabetic
 - 46% -- impaired glucose tolerance
 - Insulin
 - fasting levels low
 - sluggish initial insulin secretion
 - 72% -- later high insulin after glucose
 - consistent with beta cell dysfunction
Glucose/ Insulin

- Limited rapid insulin rise to food
 - Is an inherent feature of FA
- Worse after androgen or steroid therapy, or after HCT
- Leads to
 - Impaired glucose tolerance, poor growth, overt diabetes mellitus.
Outline of talk

- **Hormones by age**
 - Glucose & insulin
 - Growth
 - Hypothyroidism
 - GH deficiency
 - Puberty
 - Bone mineral

- Evaluation
- Therapy
Height in FA

- **Average height -- 1st percentile**
 - Women -- 150cm, 4 ft 11 in
 - Men -- 161cm, 5 ft 3.5 in
 - Half have height within normal range.

- **Taller than average -- 10\%**
Hypothalamic pituitary function

Pituitary releases GH, TSH, LH, FSH, ACTH, Prolactin, Vasopressin
Patterns of hormones

(A) Patterns of hormones in different age groups:
- **Prepubertal**
- **Pubertal**
- **Early Pubertal**

- **GH (Growth Hormone)**
- **LH (Luteinizing Hormone)**
- **TSH (Thyroid-Stimulating Hormone)**
- **ACTH and cortisol**

Graphs show the patterns over time (8AM to 8PM).
Outline of talk

- Hormones by age
 - Glucose & insulin
 - Growth
 - Hypothyroidism
 - GH deficiency
 - Puberty
 - Bone mineral

- Evaluation
- Therapy
Thyroid control
Thyroid effects by age

- Infant / toddler (< 3y)
 - Brain development, intellect & growth
- Child & adolescent
 - Growth & puberty
- Adult
 - Metabolism & energy
Hypothyroidism

- Thyroid hormone levels in FA are mildly abnormal
 - borderline low T4 or FT4
 - borderline high TSH, values >3 are suspicious
Thyroid Study (Eyal 2008)

- supported by FARF
- Eight children with FA
 - TSH > 3 mU/L or FT4 in lowest 1/3 of normal range
 - treated for 7mo with thyroid hormone, 7mo with placebo
- Growth rate faster on thyroid hormone than on placebo
- Conclusion:
 - T4 therapy of FA children with borderline TFT’s may improve their growth
Growth Velocity (GV) during placebo & thyroid therapy (8 children with FA)

Eyal 2008
Outline of talk

- Hormones by age
 - Glucose & insulin
 - Growth
 - Hypothyroidism
 - GH deficiency
 - Puberty
 - Bone mineral

- Evaluation

- Therapy
Growth hormone control

GH stimulates IGF-I action on bones & muscles
GH by age

- Infant
 - GH not as important

- Child & adolescent
 - Growth
 - Muscle strength

- Adult
 - Bone mineral density
 - Muscle strength
 - Lipid health
GH Deficiency (GHD)

- Only a few patients with FA have GHD
- 30-40% have low GH peak
 - But sometimes not short, or growing OK
- GH levels often low overnight
 - "partial" GHD?
- GH & IGF-I are not as low as height.
Outline of talk

- Hormones by age
 - Glucose & insulin
 - Growth
 - Hypothyroidism
 - GH deficiency
 - Puberty
- Bone mineral
- Evaluation
- Therapy
Puberty hormone control

Pituitary LH & FSH stimulate ovaries / testes
Puberty hormones by age

- Infant
 - Temporary activation
- Child
 - Inactive
- Adolescent
 - Active hormones
- Adult
 - Sexual function
Puberty

- Early onset of puberty
 - decreases time to grow taller
 - before age 8y in girl & 9y in boy

- Delay defined as
 - no puberty in 12y girl or 13y boy
 - no menstrual period yet in 14y girl.
Androgen therapy

- Criteria for androgen use in FA
 - determined by hematologist or transplanter

- Androgens
 - speed up growth
 - improve blood counts
 - virilize both boys & girls
 - mature bones faster
 - shorten period of time to grow

- BA advance may exceed gain in height
 - recheck BA every 6 months
Outline of talk

- Hormones by age
 - Glucose & insulin
 - Growth
 - Hypothyroidism
 - GH deficiency
 - Puberty
 - Bone mineral
- Evaluation
- Therapy
Bone mineral control

- Nutrition, vitamin D, calcium
- Growth hormone
- Puberty hormones
Bone mineral by age

- **Infant & child**
 - Gradual increase

- **Adolescent**
 - Rapid rise in bone mineral

- **Adult**
 - Peak bone mineral in about age 25y
 - Then gradual decline
Bone Mineral Density (BMD)

- Only 2 articles about BMD in FA
 - 13 adults (NIH)
 - Most had osteopenia or osteoporosis compared to normal for gender & age
 - DXA overestimates incidence of osteopenia in small stature
 - Need to adjust for height age?
BMD in FA (Rutter & Rose, 2008)

Our findings

- BMD in FA is **normal**
- both before & after transplant (BMT)
- if adjusted for height

Encourage adequate vitamin D & calcium intake
Outline of talk

- Endocrine function
- Evaluation
- Therapy
Annual evaluation

- Accurate height measurement
- 8am TSH, T4, FT4, cortisol
- OGGT, or glucose & insulin after eating
- Other
 - GH stimulation tests, BA
 - If on thyroid therapy & growth is slow
 - MRI of head
 - If multiple deficiencies
 - LH, FSH, estradiol or testosterone
 - If delayed puberty
Therapy, Diet

- adequate calories & regular exercise
- sufficient calcium & vitamin D
- avoid concentrated sweets
 - complex carbs vs simple sugars
 - avoid excessive sugar intake
Insulin

- Long-acting basal insulin
 - not needed if normal fasting glucose
- Short-acting insulin at meals
 - “cover” for carbs
 - If hyperglycemia
 - Glucose >200 at 30 min after OGTT with low insulin
 - Or post-prandial glucose consistently >180mg/dL
- Check blood sugars 2H after start of meal
Thyroid hormone

- Thyroid hormone therapy
 - If TSH over 3mU/L (primary)
 - Or if FT4 low with normal TSH (central)

- Treatment target
 - TSH 0.5 - 2.0mU/L (if primary)
 - FT4 in upper third of normal (if central)
Growth hormone

- GH use in short child with FA
 - after HCT if child has GH deficiency
 - not just for short stature or SGA
- Controversy
 - use of GH before HCT, or in absence of GHD

- IGF-titration
 - Adjust GH dose to keep IGF-I mid-normal
Depot Lupron

- In short child with puberty too early
 - Suppress puberty for 3y
 - Permits time to keep growing taller
Estrogen

- No puberty by age 13y
- **In short girl**
 - Low dose estrogen therapy
 - Avoid rapid increase in estrogen dose
- **In normal height girl**
 - slow increase in estrogen dose every 6m until adult dosing
Testosterone

- No puberty by age 14y
- In short boy
 - Low dose testosterone therapy
 - Observe for pubertal progression for next 6m
- In normal height boy
 - Slow increase in testosterone dose every 6m until adult dosing
Bone therapy

- Adequate dietary calcium & vitamin D
- Elemental calcium:
 - 500mg daily in young child
 - 1000 to 1500mg in adolescent
 - 1200mg in adult
- Vitamin D:
 - 1000 units daily
- Bisphosphonates
 - if BMD low with fractures
Endocrine -- adults with FA

- Adults with FA should see endocrinologist
- Attention to
 - thyroid status
 - glucose tolerance
 - lipid abnormality
 - gonadal function
 - bone mineral density
Summary

- Children & adults with FA have risk for
 - Weight low or high
 - Sluggish insulin release
 - Small stature
 - Hypothyroidism
 - GH deficiency
 - Early or late puberty
 - Low bone mineral after long steroid use or in delayed puberty
- Involve endocrinologist in starting therapy & follow-up endocrine care
Thyroid Controversy

- use of TSH >3mU/L as diagnostic criterion for mild hypothyroidism
- upper limit of TSH in healthy adults
- in adults, treatment not usually started unless TSH is persistently >10mU/L
- mild TSH elevation provides opportunity to treat a short child
- Based on the thyroid treatment study, short children with FA & borderline TFT’s may benefit from thyroid hormone therapy.
- use of GH therapy in FA
- increased risk of malignancy
 - oral pharyngeal & gynecological cancers
 - risk of developing acute myelogenous leukemia (AML)
- unknown whether GH therapy could increase these risks
Childhood cancer survivors

- new leukemia in GH-treated patients without risk factors
 - not different from that of general population
- limited data
 - GH-treated FA subjects are not at higher risk of AML (or other malignancies) than are FA subjects not treated with GH
- A short child with FA should be treated with GH
 - after HCT
 - if has GHD
 - not just for short stature or SGA
- Controversial:
 - use of GH prior to HCT, or in absence of GHD
GH patient registries

- useful safety & efficacy data re: use of GH in general population
- few subjects with FA
- Many adults with FA have had nasopharyngeal cancer or cervical cancer
 - lifelong cancer risk even if bone marrow has been corrected by HCT
- experience with GH use in FA is too small for definitive conclusions
Insulin therapy

- Blood sugars should be checked 2H after start of meal
 - initially after each meal
 - eventually not necessary
- If blood sugar after eating remains >180mg/dL
 - increase insulin to 1 unit for 25g
 - then 1 unit for 20g, and so on
- Ideal treatment goal
 - post-prandial glucose of 90 to 150mg/dL without hypoglycemia
Delay in a girl

- In FA girls **expected to reach adequate adult height**
 - slowly increase estrogen dose every 6mo until full replacement of 1.25mg daily
 - when spotting occurs, Provera 10mg by mouth daily for 10 days

- When acceptable adult height is achieved, birth control pills can be used for replacement
Alternative therapy (delay in boy)

- topical testosterone gel
 - initial dose 1.25mg daily
 - titrate to achieve reasonable serum levels for age & height
 - Initial goal might be testosterone of 50ng/dL

- Low dose testosterone dosing
 - Maintain several years while boy grows taller
 - rapid increase in testosterone dose should be avoided

- When acceptable adult height is achieved, adult testosterone dosing can be used for replacement
Bisphosphonates

- More aggressive intervention if BMD is low for height with fractures
 - Oral weekly or monthly in adult
 - If ≥2 low impact fractures
 - If DXA result < -1.5 SD (after adjustment for height age)

- Treat any hormone deficiency, especially treat for pubertal delay
- Oxidative repair mechanism is implicated in etiology of deficiencies
- Persons with FA now have significantly extended lifespan
- We need to address quality of life issues, such as adult height